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ABSTRACT_______________________________________________ 

Climate change impacts are highly dependent on regional geographical features, local 
climate variability, and socio-economic conditions. Climate change Impact assessment 
studies should therefore be performed at the local or at most at the regional level for the 
evaluation of possible impacts. However, climate scenarios are produced by Global 
Circulation Models with spatial resolutions of several hundred kilometres. Downscaling 
methods are thus needed to bridge the gap between the large scale climate scenarios and 
the fine scale where local impacts happen. 

The aim of this work was to assess the use of statistical downscaling methods to model 
precipitation extremes focusing on the urban areas of Lisbon and Coimbra. The overall 
results for Lisbon showed high uncertainties in the definition of signal trend. With the 
exception of the 2 years return period both scenarios diverge, with uncertainty increasing by 
the end of the XXI century and in higher return periods. Nevertheless, for 2050’s both 
scenarios tend to agree on higher return periods when compared with the reference values. 
For Coimbra the results clearly show a convergence in both scenarios for a decrease in the 
return periods for the mid and end of the XXI century. With the exception of the 2 years 
return period all projection indicate that all return levels will likely become twice as frequent 
at the end of the century. 
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1 INTRODUCTION 

Global Circulation Models (GCMs) are widely used to assess climate change at a global 
scale, i.e. the global warming. However, GCMs outputs, with a grid cell size with hundreds of 
kilometers in length, are not enough to assess the detailed changes at regional/local levels. 
In fact, most impact studies are done for spatial resolutions of the order of a few square 
kilometers and even lower in the case of regions of complex topography, coastal or island 
locations or with highly heterogeneous land-cover (Wilby, 2004). 

In these cases it would be adequate to resort to Regional Climate Models (RCMs), with a 
spatial resolution of the order of tens of kilometers or even less. Nevertheless bridging the 
gap between the resolution of global climate models and local scale weather and 
microclimatic processes represents a considerable technical challenge.  

RCMs derive from the application of dynamical downscaling methods. They take as domain 
boundary conditions the larger scale atmospheric and sea surface variables supplied by the 
global coupled Atmospheric and Ocean Global Circulation Models (AOGCMs), in a process 
called “nesting”, where RCM grid-boxes nest inside one or more GCM grid-boxes. Like 
GCMs, RCMs are based on numerical simulations of the physical processes operating in 
nature.  

Unfortunately RCM still have several drawbacks, for example, they have limited number of 
available experiments/scenario runs and time periods. The main limitation is that, depending 
on the domain size and resolution, they can be very demanding from a computational 
viewpoint. Furthermore, training for modelers requires a high technical and scientific 
background and model calibration and validation is difficult to assess (Mearns, 2001). 

As an alternative to dynamic models, statistical downscaling models have been developed. 
They are based on the view that regional climate is mostly a result of the large scale climatic 
state and regional/local physiographic features, e.g. topography, land-sea distribution and 
land use (Wilby, 2004). Statistical downscaling methods are generally classified in three 
groups: (i) regression models; (ii) weather pattern classification schemes and (iii) weather 
time series generators. A major advantage of these techniques in comparison with 
dynamical models is that they are computationally less demanding, and can be easily 
applied to the output of various GCMs scenarios, enabling a more accurate assessment of 
future uncertainties. The major theoretical limitation of statistical downscaling is that their 
basic assumption is not verifiable, i.e., the statistical relationships developed for the present 
day climate will also hold for the different forcing conditions in the future climates (Fowler, 
2007). 

The aim of this work was to assess the use of statistical downscaling methods to model 
precipitation extremes, focusing on urban areas, where this kind of events can cause floods. 
The outputs will integrate a risk assessment on floods for several Portuguese cities, with the 
quantification of the impacts of climate change on flood frequency and consequently on 
damage. 
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2 Methods 

2.1 Tools and datasets 

The chosen statistical downscaling approach is a hybrid between a stochastic weather 
generator and transfer function methods. Large-scale circulation patterns and atmospheric 
moisture variables are used to condition local scale weather parameters such as 
precipitation occurrence and intensity. Stochastic techniques are then used to artificially 
inflate the variance of the downscaled daily time series. This method was applied using the 
SDSM (Statistical DownScaling Model) tool version 4.2, developed by Wilby, Dowson and 
Barrow, 2001. 

Daily precipitation, for Lisbon between 1961 and 2001, was obtained at the European 
Climate Assessment & Dataset (ECA&D) for the following meteorological station: Name: 
177 LISBOA GEOFISICA; WMO: 08535; Latitude: 38º43’ N; Longitude: 09º09’ W; Height: 
77m. For Coimbra the data was published by Valente, et al, 2008 for the station Name: 
COIMBRA GEOFISICA; Latitude: 40º 12’ 25’’; Longitude: 8º 25.4' W; Height: 140 m. 

The chosen GCM was the coupled atmosphere-ocean HadCM3 developed by the Hadley 
Centre, with a horizontal resolution of 2.5º of latitude and 3.75º of longitude, with a global 
grid of 96 x 73 grid cells.  

The HadCM3 daily predictors for the A2 and B2 scenarios were acquired at the Canadian 
Climate Change Scenarios Network (CCCSN). These predictors can also be downloaded 
from the National Center for Environmental Prediction NCEP/NCAR reanalysis project web 
site (http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) but for this particular study 
these datasets had to be interpolated to the same grid as the HadCM3 GCM (2.5º latitude x 
3.75º longitude) and then normalized over the complete 1961-1990 period.  

 

2.2 Exploratory analysis 

The first step of the exploratory analysis was to look at the behavior of extreme precipitation 
between 1961 and 2001 by analyzing the number of days above the 99th percentile per year 
and the inter-annual variability of the 24 hour maximum per year. In the second step, daily 
maximum precipitation values per year where ranked and fitted to several probability density 
functions to choose the most appropriate and then calculate the different probability of non-
exceedance/return periods which is an estimate of the likelihood of an flood event to occur. 

The chosen probability density function was the Gumbel’s Extreme Value Type I method, 
usually called EV I (Gumbel, E.J. 1954). The cumulative density function of the Gumbel 
method is the double exponential has showed in Eq. 2.1: 

Eq. 2.2.1 F(x) = e 
–e 

–y

 
 

in which F(x) is the probability of non-exceedance. This way the probability of exceedance is 
the complementary probability to F(x): 

Eq. 2.2.2  G(x) = 1 – F(x) 

The return period T is the reciprocal of the probability of exceedance, therefore, 
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Eq. 2.2.3   

From Eq. 2.2.3 we have: 

Eq. 2.2.4   

In the Gumbel method the precipitation are obtained from the frequency formula, Eq. 2.2.5: 
 

Eq. 2.2.5  

 
where s is the standard deviation and   the mean of the population. The frequency factor K 

is evaluated with the frequency formula: 
 

Eq. 2.2.6  

 
where  is the standard deviation and  is the mean of the Gumbel distribution. These 

values are a function of record length n. From Eq. 2.2.5 and 2.2.6 we have: 

Eq. 2.2.7  

and finally with Eq. 2.2.4 we have the precipitation for a given return period. 

Eq. 2.2.8  

 
 

2.3 Climate scenarios 

SDSM condenses the task of statistically downscaling into five main steps: (i) data quality 
control and transformation; (ii) screening of predictor variables; (iii) model calibration and 
selection; (iv) model validation; and (v) scenario generation from GCM predictors. 

The appropriate variables where chosen using the NCEP (National Center for 
Environmental Prediction) reanalysis predictors by calculating and analyzing the monthly 
correlations, the histogram of the residuals, the residuals versus the predicted variable and 
calculating the Durbin-Watson statistics which is a statistical test used to detect the 
presence of autocorrelation in the residuals. 

The selected GCM grid cells for Lisbon and Coimbra downscaling models where different. 
Lisbon is closer to the Atlantic Ocean in the lower left vertex of HadCM3 grid cell 95x 21y, 
but after testing different combinations of predictors from different adjacent grid cells the 94x 
21y cell was chosen. For Coimbra the HadCM3 95x 21y grid cell was chosen since the city 
is located near its center. 
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The HadCM3 A2 and B2 SRES scenarios were used to produce a synthetic dataset of daily 
precipitation from 1961 to 2099 and an analysis of extremes was conducted to represent the 
2020s, 2050s and 2080s magnitudes of daily rainfall events (called return levels) for the 2,  
5, 10, 20, 50 and 100 year return periods. 

The predictors chosen for Lisbon and Coimbra are presented in Table 2.. 

Table 2.3.1 – List of predictors chosen for downscaling precipitation 

Lisbon Coimbra 

Surface zonal velocity Surface vorticity 

Surface vorticity Surface wind direction 

850 hPa zonal velocity 500 hPa zonal velocity 

Surface wind direction 
500 hPa geopotential 

height 

850 hPa air flow strength 850 hPa airflow strength 

850 hPa meridional 
velocity 

Surface specific humidity 

850 hPa geopotential 
height 

 

Relative humidity at 850 
hPa 

 

Near surface relative 
humidity 

 

 

In order to have a better representation of the extremes a fourth root transformation was 
applied to the predictor and a variance inflation and bias correction methods were integrated 
in the model.  

To assess the relative change between the present return periods and the future climate 
scenarios the following steps were taken: 

1. Calculation of current (1961-2001) return levels of all rainfall events with return 
periods between 1.05 and 900 years rainfall data using extreme value analysis (EV 
Type I). 

2. Identification of the current return levels for 6 return periods (2 in 5, 10, 20, 50 and 
100 year events) from step 1. 

3. Step 1 was repeated using climate model data for the period 1961-2001 (control 
period), 2010-2039 (2020s), 2040-2069 (2050s) and 2070-2099 (2080s) and the 
scenarios A2 and B2. 

4. For all time periods and scenarios it was calculated the climate scaling factors by 
making the difference between the precipitation model of the control period and the 
scenarios. 

5. Results from step 4 were added to all return levels of the distribution function of the 
observations. 

6. Identification of which future return periods have the closest return levels to those 
identified in step 2. 
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3 Results and Discussion 

3.1 Exploratory data analysis 

The exploratory data analysis aims to provide general information about extreme 
precipitation events connected with floods. Lisbon and Coimbra are urban areas with high 
population density and construction. In these areas, flood events usually occur due to heavy 
rain in short periods of time causing losses in goods and building structures. 

3.1.1 Lisbon 

The 24 hours maximum precipitation per year in Lisbon was used to adjust a probability 
density function that reflects the probability of non-exceedance of a given precipitation. 
Figure 3.1.1 shows the inter-annual variability of maximum precipitation between 1961 and 
2001 while figure 3.1.2 explores the number of events above the 99th percentile as an 
indicator of the annual frequency of extreme precipitation for the same period. 

 
 

Fig. 3.1.1 – Maximum annual precipitation (mm) 
between 1961 and 2001 for Lisbon Geofísica 
meteorological station. 

 

Fig. 3.1.2 – Number of days above the 99
th
 

percentile between 1961 and 2001 for Lisbon 
Geofísica meteorological station. 
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Fig. 3.1.3 – Comparison of the Gumbel’s Extreme 
Value Type I density function and the ranking of 
the annual precipitation in Lisbon. 

Fig. 3.1.4 – Linear fit between Gumbel’s Extreme 
Value Type I density function and the 
precipitation ranking. 

As showed in figure 3.1.3 and 3.1.4 the fit of the Gumbel’s Extreme Value Type I function 
has coefficient of determination (R2) close to one, attesting to the good fit between 
observations and model estimations. Table 3.1.1 shows the calculated Gumbel parameters 
used in equation 2.2.3, where σ and ȳ is given by the Gumbel’s table showed in Appendices 
I. 

Table 3.1.1 – Average and standard deviation of the Gumbel’s table and the daily maximum 
precipitation per year between 1961 and 2001 for Lisbon. 

Variable name Value 

standard deviation of the Gumbel distribution (σ) 0.5442 

average of the Gumbel distribution (ȳ) 1.1436 

 sample average (μ) 52.76 

standard deviation of the sample (s) 18.81 

 

With the above parameters and taking into account Eq.2.2.3, the calculation of the return 
period for a given precipitation is given by the equation: 

RP=-((EXP(EXP((1.1436*(52.76-x))/18.81-0.5442))/(1-(EXP(EXP((1.1436*(52.76-x))/18.81-
0.5442)))))) 

where x is the precipitation in mm and RP is the return period in years. 

The calculation of the return level (RL) for a given return period is done using the following 
expression: 

RL=52.76+(((-LN(LN(RP/(RP-1))))-0.5442)/1.1436)*18.81 
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3.1.2 Coimbra 

When comparing the results (Figure 3.1.2.2) from Coimbra with the one from Lisbon we can 
clearly see that the number of days per year above the 99th percentile is generally lower in 
Coimbra. 

  

Fig. 3.1.2.1 - Maximum annual precipitation (mm) 
between 1961 and 2001 for Coimbra Geofísica 
meteorological station. 

 

Fig. 3.1.2.2 - Number of days above the 99
th
 

percentile between 1961 and 2001 for Coimbra 
Geofísica meteorological station. 

 
 

Fig. 3.1.2.3 - Comparison of the Gumbel’s 
Extreme Value Type I density function and the 
ranking of the annual precipitation in Coimbra 

Fig. 3.1.2.4 - Linear fit between Gumbel’s 
Extreme Value Type I density function and the 
precipitation ranking. 

As showed in Figure 3.1.2.3 the adjustment between the probabilities of non-exceedance of 
the EV type I distribution and the empirical ranking of the observations is very good, as 
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proven by the coefficient of determination of ≈0.98 showed in figure 3.1.2.4. Table 3.1.2.1 
shows the parameters used to adjust the observations to a EV type I distribution. 

Table 3.1.2.1 – Average and standard deviation of the Gumbel’s table and of the daily 
maximum precipitation per year between 1961 and 2001 for Coimbra. 

standard deviation of the Gumbel distribution (σ) 0.5442 

average of the Gumbel distribution (ȳ) 1.1436 

 sample average (μ) 49.93 

standard deviation of the sample (s) 12.15 

 

With the above parameters and taking into account Eq.2.2.3, the equation to calculate the 
return period for a given precipitation is: 

RP=-((EXP(EXP((1.1436*(49.93-x))/12.15-0.5442))/(1-(EXP(EXP((1.1436*(49.93-x))/12.15-
0.5442)))))) 

and the calculation of the return level for a given return period in Microsoft Excel is: 

RL=49.93+(((-LN(LN(RP/(RP-1))))-0.5442)/1.1436)*12.15 



 10 

3.2 Climate scenarios 

3.2.1 Lisbon 

The results for the downscaled 24 hour maximum precipitation per year for the reference 

period can be analyzed in figure 3.2.1.1 and table 3.2.1.1. The graphical comparison 

between the EV Type I of the observations and the EV Type I of the downscaled estimated 

values tell us that they are both very similar, but with a slight underestimation, meaning that 

the average and the standard deviation of the two samples are very close. 

 

 

Gumbel RP 
(years) 

Model PP 
(mm) 

Obs. PP 
(mm) 

1.05 23 25 

5 65 68 

10 77 81 

15 84 88 

20 88 93 

30 95 99 

40 100 104 

50 103 108 

60 106 111 

80 111 116 

100 114 119 

500 140 146 
 

Fig. 3.2.1.1 - Comparison of the Gumbel’s 
Extreme Value Type I density function of the 
observations and the downscaled model for 
Lisbon. 

Table 3.2.1.1 – Comparison between the Return 
Period (RP) of the downscaled precipitation (PP) 
model and the observations (Obs.). 

Replacing the NCEP predictors with the HadCm3 A2 and B2 predictors gives us a picture on 

how precipitation projections tend to behave. Figure 3.2.1.2 shows the observed daily 

maximum precipitation per year between 1961 and 2001 and its projections between 2001 

and 2099 indicating a possible slight decrease at the end of the XXI century. It is also 

important to notice the medium term variability of the precipitation that cyclically alternates 

from dry to wet periods. This cycle is clearer when analyzing river discharges and basin 

average precipitation rates. Recent studies show a relationship between this phenomena 

and the rate of change of the sun’s orbital angular momentum, which is thought to modulate 
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the strength of the solar wind and sunspot dynamics under weak sunspot activity 

(Landscheidt, 2000). 

  

Fig. 3.2.1.2 – Observations (Obs.) and projections of the daily maximum precipitation per year in 
Lisbon for the HadCm3 A2 and B2 SRES in soft color lines and its 10 years moving averages in solid 
lines. 

The projections of the 2, 5, 10, 20, 50 and 100 years return periods for the A2 and B2 

scenario are respectively presented in figures from 3.2.1.3 to 3.2.1.8 and were calculated 

based on the five step procedure presented e 2.3. Each result was calculated with 30 years 

values, 2010-2039, 2040-2069 and 2070-2099, to represent the 2020’s, 2050’s and the 

2080’s periods, respectively. It is also important to mention that no homogeneity test was 

performed of the chosen time window, meaning that each result can be influenced by the 

dominant wet or dry cycle. 

The overall results for Lisbon showed a high uncertainty regarding the definition of a signal 

trend. With the exception of the 2 year, both scenarios diverge regarding the evolution of the 

different return periods characterized by a slight decrease in return period in the B2 scenario 

for the 2020 and 2080 periods, where, inversely, the B2 scenario usually shows a stronger 

increase signal. Nevertheless, for 2050 period, both scenarios tend to agree on higher 

return periods when compared with the reference values. The two scenarios also present a 

greater uncertainty, given by a higher interval range between scenarios, at the end of the 

XXI century and for higher return periods. 
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Regarding the aforementioned two year return period, Figure 3.2.1.3 shows a slight 

decrease in both scenarios in the short (2020) and medium term (2050), meaning a 

tendency of higher frequencies of this level of precipitation. This tendency might have a 

significant impact on flood risk estimation in futures scenarios since it is well known that the 

two years return period precipitation in Lisbon is sufficient to trigger floods, leading to asset 

losses (Ana Lopes, et al, 2010). 

  

Fig. 3.2.1.3 – Short, medium and long term 
projections of the precipitation equivalent of the 2 
years return period for the A2 and B2 scenario. 

Fig. 3.2.1.4 - Short, medium and long term 
projections of the precipitation equivalent of the 5 
years return period for the A2 and B2 scenario. 

  

Fig. 3.2.1.5 - Short, medium and long term 
projections of the precipitation equivalent of the 
10 years return period for the A2 and B2 
scenario. 

Fig. 3.2.1.6 - Short, medium and long term 
projections of the precipitation equivalent of the 
20 years return period for the A2 and B2 
scenario. 
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Fig. 3.2.1.7 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 

Fig. 3.2.1.8 - Short, medium and long term 
projections of the precipitation equivalent of the 
100 years return period for the A2 and B2 
scenario. 

3.2.2 Coimbra 

The same information presented for Lisbon is given in this section for Coimbra.  

The analysis of figure 3.2.2.1 and table 3.2.2.1 also shows a good agreement between the 

EV I of the observations and the EV I of the downscaling precipitation results, but with minor 

overestimation of the precipitation for a given return period. 

 

Return Period 
(years) 

Model PP 
(mm) 

Obs. PP 
(mm) 

1.05 35 32 

5 63 60 

10 71 68 

15 75 73 

20 78 76 

30 83 80 

40 86 83 

50 88 86 

60 90 88 

80 93 91 

100 96 93 

500 113 110 
 

Fig. 3.2.2.1 - Comparison of the Gumbel’s 
Extreme Value Type I density function of the 
observations and the downscaled model for 
Coimbra. 

Table 3.2.2.1 - Comparison between the Return 
Period (RP) of the downscaled precipitation (PP) 
model and the observations (Obs.). 
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In figure 3.2.2.2 is also possible to identify the natural wet/dry cycle but the overall 

tendencies in both scenarios show an increase of 10 mm in the ten years moving average of 

the daily maximum precipitation values for the end of the XXI century, when compared with 

the reference period. 

 

 

Fig. 3.2.2.2 – Observations (Obs.) and projections of the daily maximum precipitation per year in 
Coimbra for the HadCm3 A2 and B2 SRES in soft color lines and its 10 years moving averages in 
solid lines. 

The analysis of the figures from 3.2.2.3 to 3.2.2.8 clearly show a convergence in both 
scenarios for a decrease in the return periods in the mid and end periods of the XXI century. 
With the exception of the 2 years return period, projections indicate that all the simulated 
precipitation events will likely become approximately twice as frequent by the end of the 
century. 
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Fig. 3.2.2.3 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 

Fig. 3.2.2.4 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 

  

Fig. 3.2.2.5 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 

Fig. 3.2.2.6 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 
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Fig. 3.2.2.7 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 

Fig. 3.2.2.8 - Short, medium and long term 
projections of the precipitation equivalent of the 
50 years return period for the A2 and B2 
scenario. 
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4 CONCLUSION 

Regionalization of climate scenarios is an important procedure to access local climate 
variability that global climate models cannot represent due to their spatial resolution. Both 
statistical and dynamical downscaling techniques are often used to bridge the gap between 
the large and small spatial scale but both methods usually have difficulties representing 
precipitation extremes. This work showed that statistical methods can be used for 
downscaling extreme precipitation events but special attention should be given to: the GCM 
grid cell selection process; b) the selection of the predictors and; c) the integration of a 
variance inflation and bias correction methods. These three important steps are essential to 
improve model estimation, specially the last one, since it allows a better representation of 
precipitation extremes. 

Results showed that the Gumbel’s Extreme Value Type I probability distribution provided the 
best fit with the daily maximum precipitation per year values, with a coefficient of 
determination higher than 98% in Coimbra and Lisbon. 

Overall results for Lisbon show a higher uncertainty in the definition of a signal trend for 
most of the return periods, although a slight tendency for a decrease in frequency is 
observed, with the exception of the 2 year return period. In the case of Coimbra results 
show a convergence in both scenarios towards a significant decrease in the return periods 
for the mid and end of the XXI century. This difference in behavior between the two 
locations might be partially explained by the relative geographical location of both cities. 
Portugal is located in a transitional climatic region between an Atlantic influenced temperate 
northern region and a more Mediterranean driven semi-arid region southern region. The 
SREX report (IPCC, 2012) shows a clearer increase in the frequency of extreme 
precipitations events for the first region, while results for the second are less pronounced 
and more uncertain. Since the Tagus basin, where Lisbon is located, corresponds to the 
transitional area between these two climatic regions, the extreme precipitation trend signal 
provides ambiguous interpretations, while Coimbra, more to the north, displays a stronger 
signal pointing towards an increase in the frequency of extreme precipitation events. 

The recent Representative Concentration Pathways (RCP) are the latest generation of 
radiative forcing scenarios that provide input to climate models. For future work this analysis 
should include an ensemble of global climate models using these new RCPs for better 
estimation of extreme precipitation and representation of the uncertainties. 
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Appendices I 

Mean ȳ and Standard Deviation σ of Gumbel variate (y) versus record length (n) 

 


